Computational Studies on the Substrate Interactions of Influenza A Virus PB2 Subunit
نویسندگان
چکیده
Influenza virus, which spreads around the world in seasonal epidemics and leads to large numbers of deaths every year, has several ribonucleoproteins in the central core of the viral particle. These viral ribonucleoproteins can specifically bind the conserved 3' and 5' caps of the viral RNAs with responsibility for replication and transcription of the viral RNA in the nucleus of infected cells. A fundamental question of most importance is that how the cap-binding proteins in the influenza virus discriminates between capped RNAs and non-capped ones. To get an answer, we performed molecular dynamics simulations and free energy calculations on the influenza A virus PB2 subunit, an important component of the RNP complexes, with a cap analog m7GTP. Our calculations showed that some key residues in the active site, such as Arg355, His357, Glu361 as well as Gln406, could offer significant hydrogen bonding and hydrophobic interactions with the guanine ring of the cap analog m7GTP to form an aromatic sandwich mechanism for the cap recognition and positioning in the active site. Subsequently, we applied this idea to a virtual screening procedure and identified 5 potential candidates that might be inhibitors against the PB2 subunit. Interestingly, 2 candidates Cpd1 and Cpd2 have been already reported to have inhibitory activities to the influenza virus cap-binding proteins. Further calculation also showed that they had comparatively higher binding affinities to the PB2 subunit than that of m7GTP. We believed that our findings could give an atomic insight into the deeper understanding of the cap recognition and binding mechanism, providing useful information for searching or designing novel drugs against influenza viruses.
منابع مشابه
Detection and characterization of influenza A virus PA-PB2 interaction through a bimolecular fluorescence complementation assay.
The influenza virus polymerase complex, consisting of the PA, PB1, and PB2 subunits, is required for the transcription and replication of the influenza A viral genome. Previous studies have shown that PB1 serves as a core subunit to incorporate PA and PB2 into the polymerase complex by directly interacting with PA and PB2. Despite numerous attempts, largely involving biochemical approaches, a s...
متن کاملCloning, expression and purification of hemagglutinin conserved domain (HA2) of influenza A virus, to be used in broad-spectrum subunit vaccine cocktails
Introduction: Influenza virus has several conserved peptides which have the capacity to be used as suitable candidates for appropriate and stable vaccine production against different types of influenza viruses. One of these peptides is HA2, the hemagglutinin stalk domain which mediates the membrane fusion and is conserved amongst different sub-types of influenza virus. This peptide is a good ca...
متن کاملA statistical strategy to identify recombinant viral ribonucleoprotein of avian, human, and swine influenza A viruses with elevated polymerase activity
OBJECTIVES Reassortment of influenza A viruses can give rise to viral ribonucleoproteins (vRNPs) with elevated polymerase activity and the previous three pandemic influenza viruses contained reassorted vRNPs of different origins. These suggest that reassorted vRNP may be one of the factors leading to a pandemic virus. In this study, we reconstituted chimeric vRNPs with three different viral str...
متن کاملThe N-Terminal Fragment of a PB2 Subunit from the Influenza A Virus (A/Hong Kong/156/1997 H5N1) Effectively Inhibits RNP Activity and Viral Replication
BACKGROUND Influenza A virus has a RNA-dependent RNA polymerase (RdRp) that is composed of three subunits (PB1, PB2 and PA subunit), which assemble with nucleoproteins (NP) and a viral RNA (vRNA) to form a RNP complex in the host nucleus. Recently, we demonstrated that the combination of influenza ribonucleoprotein (RNP) components is important for both its assembly and activity. Therefore, we ...
متن کاملThe RNA Polymerase PB2 Subunit of Influenza A/HongKong/156/1997 (H5N1) Restrict the Replication of Reassortant Ribonucleoprotein Complexes
BACKGROUND Genetic reassortment plays a critical role in the generation of pandemic strains of influenza virus. The influenza virus RNA polymerase, composed of PB1, PB2 and PA subunits, has been suggested to influence the efficiency of genetic reassortment. However, the role of the RNA polymerase in the genetic reassortment is not well understood. METHODOLOGY/PRINCIPAL FINDINGS Here, we recon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012